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This paper discusses the general theory of two-photon ionization of a hydrogenic state in the nonrelativis-
tic dipole approximation. An application is made to the photoionization of the metastable 25 state of atomic 
hydrogen by optical radiation, for example, by the light from a ruby laser. The sum over intermediate 
states is carried out exactly by means of an implicit technique. The results are given for a range of wave­
lengths from the threshold at 7290 down to 4556 A. At 6943 A, the total cross section per unit intensity is 
found to be 5.35 X10~29 cm4 W"-1. The lowest order damping corrections to the perturbation-theory results 
are worked out. 

1. INTRODUCTION 

TH E theory of the photoeffect in hydrogen is an 
old problem in physics, which was successfully 

treated in the early days of quantum mechanics.1-4 

Those calculations were based on first-order perturba­
tion theory and therefore described the process of a 
bound electron absorbing one photon and thereby 
being emitted from the atom. The possibility of a two-
photon process, which proceeds via intermediate states 
has also been recognized for a long time,5 but such a 
process did not appear to be of practical importance 
until the advent of lasers. 

A straightforward application of quantum electro­
dynamics (see Sec. 2) shows that the cross section for 
a two-photon process contains the factor I/I0 where / 
is the intensity of the radiation in W/cm2 and Jo is 
7.019X1016 W/cm2, which is the intensity correspond­
ing to a root-mean-square field strength of 1 atomic 
unit or 5.142X109 V/cm. Because the matrix elements 
which enter for a second-order process contain energy 
denominators which may be small, two-photon effects 
may become significant for intensities considerably 
less than J0, but in any case one may reasonably 
anticipate appreciable effects at practically attainable 
laser intensities. 

Such considerations have led in recent years to a 
great upsurge of interest in multiphoton processes in 
general. Estimates for some of the nonlinear effects to 
be expected, particularly in solids, have been given by 
Kleinman6 and Braunstein7; more detailed calcula­
tions have been carried out by Franken and Ward,8 
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by Bloembergen and Pershan.10 The theory of the 
two-photon photoelectric effect in metals has been 
discussed by Smith.11 Hammerling12 has made approxi­
mate calculations of two-photon ionization rates for 
some negative ions, and Stabler13 has made an estimate 
of the cross section to be expected for two-photon 
ionization of metastable hydrogen atoms by ruby laser 
light. I t is clear that the theory of two-photon pro­
cesses presents no difficulty in principle; however, 
detailed and exact calculations of the type reported 
in this paper do not appear to have been published 
previously. 

Several observations of two-photon absorption have 
been reported. The effect has been observed in in­
organic crystals14 (CaF2j Eu2+ and CdS), in cesium 
vapor,15 in organic crystals,16 and in several organic 
liquids.17 In all these cases only a semiquantitative 
comparison with theory was possible. 

There are basically two reasons why the calculations 
reported in the present paper are thought to be of 
interest. 

Firstly, it seems reasonable to believe that a clean 
experimental observation of the effect, using a ruby 
laser and a beam of metastables, is feasible and could 
make possible a really quantitative comparison of 
theory and experiment for two-photon absorption in 
the optical range. The competing processes which 
would be present in such an experiment are (in order 
of importance), quenching accompanied by emission 
of an ultraviolet photon, coherent scattering, and 
quenching accompanied by the induced emission of a 
red photon as well as an ultraviolet photon. These 
processes have been analyzed in some detail by the 
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present author18-19; their rates are linear in the in­
tensity (at least up to intensities of about 1011 W/cm2). 
For intensities above about 106 W/cm2 two-photon 
ionization is the dominant process. 

Secondly, it is thought to be of interest to exhibit 
how the technique introduced by Schwartz and 
Tieman20,21 for implicitly evaluating the sum over 
intermediate states for a hydrogenic atom can be ap­
plied to a two-photon absorption process. This tech­
nique has been applied also to the calculation of the 
quenching and scattering process mentioned in the 
last paragraph.19 

The present calculations indicate that for light in­
tensities of 6X1011 W/cm2 at 6943 A, the two-photon 
absorption rate due to a hydrogen atom in the 25 
state is roughly equal to the one-photon absorption 
rate due to a hydrogen atom in the 3P state.22 I t 
should be noted, however, that the method used in 
this paper is no longer strictly valid at intensities of 
this order (see Sec. 4). 

In Sec. 2, some general results applicable to the 
two-photon ionization of any hydrogenic state are 
presented. The special case of the 26* state is dealt with 
in Sec. 3. In Sec. 4 the lowest order damping correc­
tions to the theory are worked out. 

2. SOME GENERAL RESULTS 

The differential cross section per unit intensity may 
be derived by a straightforward application of second-
order perturbation theory. The result is 

1 da a 

I dtt 47T/0 

(e-r)/i(c-r)t-. 

Eo—Ei-}-Ep 

Epkea
2. (1) 

In this equation, / is the light intensity in W/cm2, 
da/dti is the differential cross section in cm2/sr, 70 is 
7.019X1016 W/cm2, a is the fine-structure constant 
and a is the Bohr radius. The remaining terms on the 
right-hand side of (1) are all dimensionless multiples 
of the atomic units defined on p. 3 of Ref. 4. E0 and Ei 
are the energies of the initial and intermediate atomic 
states, respectively, in units of (meA/h2), Ep is the pho­
ton energy, ke is the wave number of the emitted 
electron in units of (rne2/h2), e is the unit polarization 
vector of the incident radiation, and the r/», ri0 repre­
sent dipole matrix elements in units of (h2/me2Y12 a n ( i 
(h2/me2), respectively. The summation over intermedi­
ate states includes an integration over the positive 
energy states. The initial and intermediate states are 
normalized so that the probability of finding the elec­
tron within a large quantizing volume is unity. The 
final state is normalized so that at large distances from 

18 W. Zernik, Phys. Rev. 132, 320 (1963). 
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20 C. Schwartz, Ann. Phys. (N. Y.) 6, 156 (1959). 
21 C. Schwartz, and T. J. Tieman, Ann. Phys. (N. Y.) 6, 178 
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22 See, for example, Ref. 28. 

the atom it represents a Coulomb-modified plane wave 
of unit amplitude plus an ingoing Coulomb-modified 
spherical wave.23 Equation (1) may be obtained either 
from semiclassical radiation theory or by using the 
quantized electromagnetic field. Also, one may use as 
a perturbation either the form containing the electric 
field or the form containing the vector potential.24 

The energy of the emitted electron is determined by 

2ke
2—2Ep-jrEo (2) 

The above formulas are sufficient to determine how 
the cross section for two-photon ionization of a hydro­
genic atom depends on the charge Z of the nucleus. 
The atomic energies are proportional to Z2, the r»o are 
proportional to Z _ 1 and the tfi are proportional to 
Z~bl2. Accordingly, one finds 

a(Ep,Z) = Z-8a(Ep/Z
2,l). (3) 

The angular distribution of the electrons may be 
determined with the help of the coordinate system 
shown in Fig. 1. The light travels along the positive 
z axis and the unit polarization vector e defines the 
x axis. A primed coordinate system is defined with 
respect to the unprimed system by means of the Euler 
angles25 (a,j$,0). The outgoing electron travels along 
the negative %' axis. 

In the notation of Ref. 4, one may write the initial-
state wave function as 

<Po=Rni(r)Yim(e,<p), (4) 

where (0,<p) represent colatitude and azimuth coordi­
nates, respectively, in the unprimed system. Similarly, 
if the intermediate state is one of the bound states, its 
wave function may be written as 

^ = - M r ) F X M ( 0 , ? ) . (5) 

If the intermediate state belongs to the continuum, 
the square of its wave function must contain a factor 
F - 1 , where V is the quantizing volume, which is can­
celled by a factor V appearing in the density of con­
tinuum states. However, it is not necessary to be 
concerned with the actual expression for the radial 
functions in this case since the sum over intermediate 
states is carried out implicitly as explained in the next 
section. The complex conjugate of the final-state wave 

23 G. Breit and H. A. Bethe, Phys. Rev. 93, 888 (1954). See also 
footnote 3 on p. 296 of Ref. 4. 

24 The identity of the results obtained using either of the last 
alternatives can be verified by means of Eq. (3) of Ref. 18. It 
follows also from the fact that these forms of the dipole per­
turbation arise from Hamiltonians that are equivalent to within 
a canonical transformation, see Ref. 5, for example. For a very 
complete treatment of the relation between the two forms of the 
electromagnetic perturbation see E. A. Power and S. Zienau, 
Phil. Trans. Roy. Soc. (London) A251, 427 (1959). 

25 See, for example, M. E. Rose, Elementary Theory of Angular 
Momentum (John Wiley & Sons, New York, 1957), Chap. 4. 
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function may be written as 

<Pf*=Z L(i)LTrZ2(2L+l)JI> 
Xke-

me^RL'(ke,r)YLa(0'), (6) 

where 6' represents the colatitude referred to the 
primed coordinate system, 

»?z,= argr(£+l— i /ke), (7) 
and RLc(ke,r) is the regular solution of the differential 
equation for the radial function for a positive-energy 
electron in the field of a proton, normalized on the 
energy scale4; its asymptotic value is given by 

RL
c(ke,r)^(l/r)(2/7rker* 

Xsm(ker-^Lw+VL+ke-
1 ln2ker). (8) 

According to the well-known theorem of Gordon,26 the 
asymptotic form of <p/ represents a Coulomb-modified 
plane wave traveling along the negative % axis together 
with an incoming Coulomb-modified spherical wave. 

In order to calculate the matrix elements, one may27 

express YLQ(6') in terms of the angles (d,<p). It is in 
fact easily shown25 that 

/ 4TT \ 1 / 2 

FLO^HEM J YLM(fi,<p)YLM*(Pp). (9) 
\2L+U 

The selection rules require that for the intermediate 
states, 

X=/+ l or Z - l , 

and for the final states, 

L=l+2,l, or 1-2. 

If one uses Eqs. (4)-(9) and performs some standard 
manipulations25 involving Clebsch-Gordan coefficients 
one finds finally 

(l/I)(da/dtt) 
: (TTV8/O) I Mw+Mt+M^21

2Epa?, (10) 
where 

Mw^Pi+iMiEj,)?**'-

Mi-2=Pi-iti-2(Ep)e
in 

r — - — i 
L(2/+3)(2/+5)1/2(2/+l)1/2J 

X{L(l-m+l)(l-m+2)(l-m+3)(l-m+4)J'*Y^2,r^2(t3,a) 

+ZQ+m+l)(l+m+2)(l+m+3)(l+m+4:)yi*Yl+2^2(j3,a) 

-2l(l+l-m)(l+i+mKl+2-m)(l+2+m)JiWl+iim(fi,a)}, (11) 

1 i -f— 
1(21-] 

Mi= - P W , , ( £ , H 

(2/-l)(2/+l)1/2(2/-3)1 '2J 

X{l(l+m)(l+m-l)Q+m-2)Q+m-3)2ll2Y^2.m^2(fi,a) 

+ l(l-m)(l-m-l)(l-m-2)(l-m-3)J'W^2inH.2(M 

-2Z(l+m)(l-m)(l+m-l)V-m-l)yi*Yt_2,m(P,*)}, (12) 

r ' i 
L(2/+1)(2/+3)J 

X {[ ( /+») (l+m-1) ( /- m+1) ( / - m+2)JiWl,m-.2(j3,a) 

+ £Q-m)(l-m-l)(l+m+l)(l+m+2)Ji*Yi,m+2(t3,a) 

-C( / -«+ l ) ( / -»+2)+( /+«+l ) ( /+«»+2) ]F , l l l , 08 J o)} 

L(2/-1)(2/+1)J (2 / - l ) (2 /+ l ) . 

X{Z(l+m){l+m-l)(l-m+l)(l-m+2)J»Yi,m_2(l3,a) 

+ZQ-m)(l-m-l)(l+m+l)Q+m+2)Ji*Yl,m+2(p,a) 

-l(l+m)(l+m-l)+(l-m)(l-m-l)2Yl,m(p,a)}. (13) 
26 W. Gordon, Z. Physik 48, 180 (1928). See also N. F. Mott and H. S. W. Massey, The Theory of Atomic Collisions (Oxford 

University Press, New York, 1952), Chap. 3. 
27 For an alternative procedure, see M. L. Rustgi, W. Zernik, G. Breit, and D. J. Andrews, Phys. Rev. 120, 1881 (1960). 
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FIG. 1. Coordinate system used. The plane polarized light is 
incident along the positive z axis. The photoelectron travels 
along the negative z' axis. 

In Eqs. (11)—(13), the quantities P\L{EP) are defined 
by 

(RL°(ke,r)\r\R,x(r))(R»x(r)\r\Rni(r)) 
— 2^ v • - • • • . ( 1 4 ) 

En—E»-\-Ep 

The bound-bound and bound-free radial matrix ele­
ments occurring in (14) have, of course, been widely 
discussed in the literature.28 

In connection with the evaluation of bound-free 
radial matrix elements, the following very useful rela­
tion which does not appear to have been previously 
published may be derived: 

rL+lRL
c{kyr)e~vrdr 

2L+1 

(I" -2x/^ l /2 
-[(1+A2) (1+4&2) • • • (1+L2&2)] 1/2 

exp[— 2k~l arc cot(p/k)~] 
X— — •, (15) 

(^2+£2)L+l 

where p>0 and 0 ^ arc cot(p/k)^ir/2. This result may 
be obtained by noting that the quantity rL+1i?Lc(&, r) 
may be expressed in terms of a confluent hypergeo-
metric function which has a well-known contour inte­
gral representation29; after some simple changes of 
variable this quantity may be transformed into the 
standard form for an inverse Laplace transform, from 
which (15) follows immediately. Any desired bound-
free matrix element may be obtained from (15) by 

28 See for instance Ref. 4, especially Sees. 61-63. For additional 
values of bound-bound radial matrix elements, see R. Herdan 
and T. P. Hughes, Astrophys. J. 133, 294 (1961). For additional 
results for bound-free transitions see J. Harriman, Phys. Rev. 
101, 594 (1956); A. Burgess, Monthly Notices of the Roy. Astron. 
Soc. 118, 477 (1958); B. H. Armstrong and H. P. Kelly, J. Opt. 
Soc. Am. 49, 949 (1959). 

29 See, for example, N. F. Mott and H, S. W. Massey, Ref, 26, 

differentiating the required number of times with re­
spect to p. The relation (15) is also required in the 
implicit summation over intermediate states described 
in the next section. 

3. CALCULATIONS FOR THE H 2S STATE 

If one simply substitutes 1=0, m=0 in Eqs. (13) 
and (11), one obtains 

MQ=(i)ir-^e^Po(Ep)9 (16) 

^ 2 = (f ) T T - 1 / 2 [ 1 - 3 sin20 co^a~]e^P2(Ep), (17) 

where the subscript X on PAL, Eq. (14), has been 
dropped. One notes that the angular distribution arises 
from an s wave, a d wave, and an interference term. 
The interference term does not, of course, contribute 
to the total cross section. The exponential terms in 
(16) and (17) may be simplified by using the cosine 
rule applied to the vectors T(l — i/ke), T(3—i/ke) in 
the complex plane, and the factorial property of the 
gamma function. One finds that 

ei(VT~Vo) =-

Z/Cg 

+i-
ORia 

Energy conservation for this case requires that 

1Z, 2—9/7 1 

(18) 

(19) 

If one now substitutes the results (16)—(18) in Eq. 
(10), one obtains 

where 
(1/7) (da/dQ) = (a/18/o) (ira?)Ev \M\\ 

| M | 2 = a + b sin2/3 cos2a+c sin4/3 cos4a. 

The coefficients a, b, and c are given by 

(2-4&c
2) 

6 = 3-

(4ft.«+5W+l)y« 

(2-4*.*) 
-PoPt-6 

-P0P2 

(4*/+5*e
2+l)1'2 

(20) 

(21) 

(22) 

(23) 

(24) 

For ruby laser light, the energy denominator in Eq. (14) 
becomes quite small for the 3P intermediate state, so 
this state is clearly the most important. One might 
also expect the IP intermediate state to have some 
effect as the IS to IP radial matrix elements are rela­
tively large.28 By explicit calculation, including only 
those two intermediate states, one finds the following 
approximate values of Po(Ep) and P2(EP) at X = 6943 A: 

P < a a 5 5 - 4 3 5 0 ^ - 4 2 0 0 , (25) 

P 2 ^ - 6 1 0 - 1 2 8 0 0 ^ - 1 3 400. (26) 

In (25) and (26), the first numbers on the left come 
from the IP intermediate state and the second (much 
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larger) numbers from the SP state. The most important 
final state is the d state. 

An exact implicit evaluation of Po(Ep) and P2(EP), 
which takes into account all possible intermediate 
states including those in the continuum, may be carried 
out by means of the method of Schwartz and Tieman.30 

One defines a quantity UL(r,Ep) by 

UL(r,Ep)=Z 

rRnl(r) I Rnl(r')RLc(ke/)r
fW 

'o 

E2—En+Ep 

(27) 

where the summation includes both the negative and 
the positive energy states. Hence, one has 

(28) PL(EP)= R20(r)UL(r,Epydr. 
Jo 

The Laplace transform of UL(r,Ep), 
/•CO 

SL(p,Ep)= UL{r,Ep)e-*rdr, 
Jo 

(29) 

may be shown19 by means of the Schrodinger equation 
and the closure condition to obey the first-order dif­
ferential equation 

(-i+Ep+p*/2) (d*SL/dp*) + (2p-1) (dSL/dp) 

• / 
J o 

= / RL
c(ke,rye-prdr. (30) 

Jo 

By means of Eq. (15) one may now derive the differen­
tial equations satisfied by So and S2. 

(~1i+Ep+p*/2) (d*S0/dp*)+(2p-1) (dSo/dp) 

16 r(2-3p)(p*+k*)+6p*-Up2+6p-V 

(1 — 0-2 ir/fte)l/2L 

and 
Xexp[-

(P2+k*y 

-2ke-
1&rccot(p/ke)1, (31) 

(-i+Ep+p*/2) (d*S2/dp*)+(2p-1) (dS2/dp) 

16[( l+^ 2 ) ( l+4^ 2 ) ] 1 / 2 r 3p-l I 

(l__0-2r/Ae)l/2 .(p2+ke2Y 

Xexp[-2ke~
1 arc cot(£/&«)]. (32) 

30 See Refs. 19-21. A similar application has been made by M. 
H. Mittleman and F. A. Wolfe, Phys. Rev. 128, 2686 (1962), to 
the coherent scattering of light by hydrogen atoms in the ground 
state. Similar calculations have been carried out for the ground 
state by M. N. Adamov, Dokl. Akad. Nauk SSSR 133, 315 (1961) 
[English transl.: Soviet Phys.—Doklady 5, 768 (1961)] and for 
the n = 2 states by M. N. Adamov, V. K. Kogan, and B. I. Orlov, 
Opt. i Spektroskopiya 14, 737 (1963) [English transl.: Opt. 
Spectry. (USSR) 14, 391 (1963)]. Adamov et al. define the 
polarizability as being one-half of the more conventional value 
defined on p. 357 of Ref. 4. The results of their calculations for 
the 2S state are in reasonable agreement with those obtained by 
the present author as an intermediate step in the work reported 
in Ref. 19. 

From Eqs. (28) and (29) one sees that 

1 /<PSL\ 1 A P S A 
PL(Ep)=-( — ) + — ( — ) • (33) 

V2\ dp2 / p.x/2 2V2\ dp /p-i/i 

The boundary condition for Eqs. (31) and (32) follows 
from the definitions (27) and (29) and is that SL and 
all its derivatives are finite for all positive values of p. 
Thus, provided that Ep is less than the one-photon 
ionization energy one can determine a boundary value 
of dSL/dp at the value of p for which the coefficient 
of d2SL/dp2 vanishes. Then Eqs. (31) and (32) may be 
solved numerically and the PL(EP) determined from 
Eq. (33).31 

The method breaks down for photon energies greater 
than the one-photon ionization threshold; this simply 
corresponds to the fact that the energy denominator 
in Eq. (14) can become zero in this case. Also, one can 
show that the solutions of Eqs. (31) and (32) are 
singular at values of Ep corresponding to the B aimer 
lines, as one would expect. This last problem should, 
however, be dealt with by means of the "strong signal" 
approach32 described in Sec. 4. 

Finally, the differential cross section per unit in­
tensity is expressed in the form 

(1/7) (da/dQ) = A+B sin2/3 cos2a+C sin4/? cos4o;, (34) 

and the total cross section per unit intensity is 

<r/I=4>irA+frrB+iirC. (35) 

The results of the numerical calculations are pre­
sented in Table I. A'graph of the total cross section 
per unit intensity versus wavelength is given in Fig. 2. 

One notes that the cross section is finite at threshold 
just as in the one-photon case. This is, of course, just 
a consequence of the fact that the particles that con-

31 A slight difficulty that arises is that although the boundary 
conditions determine a starting value for the first derivative, the 
value of the second derivative at the same point is indeterminate. 
One can get around this problem, however, by developing a 
series for the solution which converges in the neighborhood of 
the starting value of p. Details of this work will be given in a 
future paper by the present author and R. W. Klopfenstein. 

32 In this connection, the following points might perhaps be 
noted: The usual perturbation theory of quantum electrody­
namics is essentially a method whereby all possible states of the 
system are taken into account but an expansion is made in terms 
of a finite number of photons. First-order perturbation theory 
describes one-photon processes, second-order theory describes 
two-photon processes, and so on. If any of the energy denomina­
tors involved becomes very small, this type of expansion clearly 
becomes useless. In such cases, however, it is sometimes reasonable 
to confine ones attention solely to a finite number of states, in 
which case the Schrodinger equation including the perturbation 
can be solved exactly. This is what is meant by a "strong signal" 
treatment; it is essentially what is done, for example, in the 
theory of resonance fluorescence described by W. Heitler, The 
Quantum Theory of Radiation (Oxford University Press, New 
York, 1954), Sec. 20. See also M. Mizushima, Phys. Rev. 132, 
951 (1963). However, if the field strength in the incident beam 
becomes comparable to one atomic unit, then it is clearly not 
legitimate to calculate results either for a finite number of pho­
tons or for a finite number of states. 
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TABLE I. Values of second-order radial matrix elements, defined following Eq. (17); angular distribution coefficients, defined by Eq. 
(34); and total cross section per intensity, given by Eq. (35). The numbers in parentheses indicate powers of 10. 

x(A) 
7290.1 
7119.2 
7000.0 
6943.5 
6800.4 
6661.3 
6472.0 
6300.0 
6200.0 
6075.1 
6000.0 
5900.0 
5800.0 
5695.4 
5600.0 
5500.0 
5360.4 
5300.0 
5200.0 
5100.0 
5000.0 
4915.1 
4873.0 
4852.3 
4811.3 
4700.0 
4649.3 
4600.0 
4556.3 

Po 

-1.719(3) 
-2.197(3) 
-2.731(3) 
-3.094(3) 
-4.753(3) 
-1.083(4) 

1.125(4) 
3.503(3) 
2.379(3) 
1.614(3) 
1.314(3) 
1.014(3) 
7.865(2) 
5.978(2) 
4.543(2) 
3.223(2) 
1.526(2) 
7.841(1) 

-5.796(1) 
-2.422(2) 
-5.956(2) 
-1.738(3) 
-7.613(3) 

1.286(4) 
2.057(3) 
5.751(2) 
3.935(2) 
2.681(2) 
1.748(2) 

P 2 

-8.506(3) 
-9.708(3) 
-1.114(4) 
-1.215(4) 
-1.689(4) 
-3.472(4) 

3.083(4) 
8.102(3) 
4.881(3) 
2.748(3) 
1.935(3) 
1.148(3) 
5.736(2) 
1.172(2) 

-2.156(2) 
-5.100(2) 
-8.764(2) 
-1.035(3) 
-1.331(3) 
-1.750(3) 
-2.605(3) 
-5.505(3) 
-2.064(4) 

3.221(4) 
4.351(3) 
5.905(2) 
1.514(2) 

-1.436(2) 
-3.587(2) 

A 

1.463 ( 
1.87K 
2.432 ( 
2.871 
5.436< 
2.224 
1.697 
1.11K 
3.870 
1.160( 
5.635 
2.159( 
1.068 
1.090 
1.626 
2.500 
4.196 
5.176 
7.464 
1.177 
2.437 
1.040 
1.434 
3.463 
6.257 
1.522 
5.676< 
6.690 ( 
1.138( 

; -30) 
: -30) 
; -30) 
; -30) 
: -30) 
; -28) 
; -29) 
: -30) 
: - 3 i ) 
: -31) 
; -32) 
-32 ) 

; -32) 
; -32) 
; -32) 
[-32) 
[~32) 
[-32) 
[-32) 
1-31) 
[-31) 
[-30) 
[-29) 
[-29) 
[-31) 
[-32) 
[-33) 
'-33) 
-32 ) 

B 

-1.100 
-1.434 
-1.887 
-2.242 
-4.314 
-1.808 
-1.394 
-9.215 
-3.196 
-9.137< 
-4.028 
- 9.888 ( 

2.613 
9.208 

-2.896 
-9.473 
-2.224 
-2.949 
-4.602 
-7.622 
-1.624 
-6.974 
-9.549 
-2.287( 
-4.000 
-4.832( 

2.674 
-1.233 ( 
-4.910( 

[-29) 
[-29) 
[-29) 
[-29) 
[-29) 
[-28) 
[-28) 
[-30) 
[-30) 
-31 ) 

[-31) 
' - 32 ) 
[-33) 
' - 33 ) 
[-32) 
[-32) 
1-31) 
[-31) 
1-31) 
1-31) 
[-30) 
[-30) 
[-29) 
-28 ) 

[-30) 
' - 32 ) 
[-33) 
-32 ) 
-32 ) 

C 

2.068 
2.758 
3.696 
4.430 
8.740 
3.770 
3.061 ( 
2.17K 
8.006 ( 
2.591 ( 
1.301 ( 
4.653 ( 
1.182( 
5.025( 
1.729( 
9.855( 
2.986 
4.212 
7.102 
1.25K 
2.827 
1.285( 
1.822( 
4.455 ( 
8.200 
1.546( 
1.028 ( 
9.338 ( 
5.885 ( 

[-29) 
; -29) 
[-29) 
[-29) 
[-29) 
[-28) 
-28 ) 
-29 ) 
-30 ) 
-30 ) 
-30 ) 
-31 ) 
-31 ) 
-33 ) 
-32 ) 
-32 ) 

[-31) 
[-31) 
[-31) 
, -30) 
;~30) 
; -29) 
-28 ) 
-28 ) 

' -30 ) 
-31 ) 

; -32) 
-33) 
-32 ) 

-(cm 
I 

2.427 
3.278( 
4.437 ( 
5.346 
1.073 ( 
4.719( 
3.987 ( 
2.991 ( 
1.160( 
4.140( 
2.288( 
1.026( 
4.422 
1.882 ( 
1.266( 
1.650( 
3.460( 
4.734 
7.948 
1.432 ( 
3.364( 
1.613( 
2.380( 
5.970( 
1.17K 
3.774 
1.084 
5.590( 
8.519( 

VW) 

; -29) 
' -29) 
;-29) 
[-29) 
, -28) 
-28) 
-28 ) 
-29 ) 
-29 ) 
-30 ) 
-30 ) 
- 3 0 ) 
[-31) 
-31 ) 
-31 ) 
-31 ) 
-31) 

[-31) 
[-31) 
-30 ) 
-30 ) 

, -29) 
-28 ) 

, -28) 
, -29) 
-31 ) 

[-31) 
-32 ) 
-32 ) 

stitute the final state of the system are an electron and 
a proton.33 By an extension of the conventional termi­
nology one might refer to the absorption edge shown 
in Fig. 2 as the Zj(2) absorption edge. 

An experimental verification of these calculations 
would be particularly interesting in view of the fact 
that there has, apparently, been no experimental check 
of even the one-photon ionization cross section for 
atomic hydrogen.34 

4. DAMPING CORRECTIONS 

It will be assumed in this section that the frequency 
of the incident photons is close to that of one of the 
B aimer lines, so that only one intermediate state need 
be considered. In particular, typical numbers will be 
given for the case of ruby laser light with only the 
intermediate 3P state taken into account. 

The amplitudes of the 2S and 3P states will be de­
noted by a, b, respectively. The differential cross sec­
tion for one-pholon ionization of the 3P state can be 
derived by elementary perturbation theory, and may 
be written as 

dab/dU= (a/2w) | e- rif\
2Epkea

2. (36) 

Equation (36) is to be compared with Eq. (1); the 
33 E. P. Wigner, Phys. Rev. 73, 1002 (1948). 
34 R. W. Ditchburn and U. Opik, Atomic and Molecular Proc­

esses, edited by D. R. Bates (Academic Press Inc., New York, 
1962), Chap. 3. 

meaning of the symbols and the units used are identical. 
The numerical value of ab for ruby laser light is 3.2 

4000 

FIG. 2. Graph of a/I, the total cross section per unit intensity 
versus the wavelength of the incident light. 
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X 10~17 cm2. Let F be the photon flux in egs units. In 
the absence of both excitation from the 2S state and 
radiative decay, the amplitude of the 3P state would 
evidently be given by 

b(t) = b{0)e<>-1i2)°*Ft, (37) 

at least as long as the intensity of the beam is not so 
high that two-photon ionization of the SP state or 
other higher order processes are significant. 

The strong-signal equations may now be written 
down exactly as in Ref. 18, they are (in cgs units). 

iM=lV*ei^~(*ha)tb-%ifiyaa, (38) 

ifib^iVe-^^-^^a-^iMyb+abF^, (39) 

where ya, Y& are spontaneous decay constants, V 
= — (b\eE*r\a) with E the peak field strength in the 
incident beam, coo the light frequency, and tiwba~Eb—Ea. 

The "small perturbation" solution to these equations 
is applicable when 

\V\K<¥\Uyo+^F-ya)+in\\ (40) 

where 0=co&a— co0. This implies in the present case an 
intensity 7<3Cl0n W/cm2. Under these conditions, the 
decay rate of the 2S state is given by the obvious 
generalization of Eq. (25) of Ref. 18. 

l \ V \ 2 \ h 2 

Ta = ya+(jb — Ja) ~ 
W+i(yb+crbF-yay 

iabF\V\2\h2 

+ — . (41) 
&+l(yb+*bF-ya)

2 

These terms are immediately interpretable as the 
natural (two-photon) decay rate, the quenching rate 
with an additional width due to the (one-photon) 
photoionization of the SF state, and the (two-photon) 
photoionization rate of the 2S state. 

If one uses Eq. (36) in (41), one finds for the differ­
ential cross section per unit intensity for two-photon 
ionization of the 25 state. 

= - ( —) J - — \Epkea\ (42) 

where the matrix elements and energies are dimension-
less multiples of atomic units. As one might expect, 
this corresponds to the perturbation theory result, Eq. 
(1), with only the 3F intermediate state considered 
and with inclusion of a width W given by 

W^fiiyb+VbF-ya). (43) 

One notes finally that ya is negligible for the 2S state 
and <rbF^yb for intensities i^2X10 6 W/cm2. 
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